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Abstract
Isochronous versions of the Bruschi–Ragnisco–Ruijsenaars–Toda lattice and
of some of its, also integrable, variants are introduced, their equilibrium
configurations are found (when they exist), and by investigating the motions
of these systems near equilibrium some diophantine relations are obtained as
well as some insight into the solution of those of these integrable models whose
solutions are not yet known.

PACS numbers: 02.30.Ik, 05.45.−a

1. Introduction

The equations of motion of the Bruschi–Ragnisco–Ruijsenaars–Toda (BRRT) lattice read as
follows:

ζ ′′
n = −ζ ′

n

(
ζ ′
n−1

ζn − ζn−1
+

ζ ′
n+1

ζn − ζn+1

)
. (1)

Here the N coordinates ζn(τ ) are the dependent variables, τ is the independent variable
and appended primes denote differentiations (the reason for using Greek letters here for the
dependent and independent variables, and appended primes rather than superimposed dots
to denote differentiations, will be clear soon). Here and hereafter indices such as n,m run
from 1 to N; but these equations of motion must be complemented by boundary conditions
specifying their versions for the extreme values of the index n, n = 0 respectively n = N,

when on the right-hand side of the equations of motion as written above comes into play the
extra variables ζ0 and ζN+1. Hereafter we consider the two standard prescriptions that maintain
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the integrability, indeed solvability, of the system of ODEs as written above: the ‘periodic’
assignment,

ζ0(τ ) = ζN(τ), ζN+1(τ ) = ζ1(τ ), (2a)

and respectively the ‘free ends’ assignment entailing that, on the right-hand side of (1) with
n = 1 and n = N, the terms featuring ζ0 or ζN+1 must be omitted, a prescription that can
clearly be implemented by setting

ζ ′
0(τ ) = ζ ′

N+1(τ ) = 0. (2b)

The justification for associating the name of Toda with this system comes from its nearest-
neighbour character, and it would be more evident if one were to perform the change of
dependent variables ζn = exp(qn) (see, for instance, [1]). The justification for associating
the name of Ruijsenaars with this system is that it belongs to the RS class of N-body
problems (where the letter R can stand either for Ruijsenaars or for ‘relativistic’ [2]), see
in particular [3]; indeed the equations of motion (1) with (2b) are exhibited in [2] in the
context of the discussion of RS systems (see in particular pp 132-3 and equation (24) of
section 2.1.13 of this book). And the justification for associating the names of Bruschi and
Ragnisco with these models is that they were the first to solve them [4]. These systems
were also discussed more recently as special solvable cases of the ‘goldfish’ model [5]. In
that context an isochronous version (but less general than that considered below, therefore
possessing no equilibrium configuration) was also treated.

In this paper, we concentrate on the isochronous version of the BRRT model, that is
obtained by applying to the equations of motion (1) the standard trick (see, for instance,
[5–22]) yielding isochronous systems, i.e. the change of (independent and dependent) variables

zn(t) = exp(iλωt)ζn(τ ), τ = exp(iωt) − 1

iω
. (3)

Thereby the equations of motion (1) become

z̈n − (2λ + 1) iωżn − λ(λ + 1)ω2zn = −(żn − iλωzn)

(
żn−1 − iλωzn−1

zn − zn−1
+

żn+1 − iλωzn+1

zn − zn+1

)
.

(4)

Here and hereafter superimposed dots indicate differentiations with respect to the (real)
independent variable t (‘time’), and the N dependent variables zn(t) are the complex
coordinates of N-point particles moving in the complex z-plane. Again these equations of
motion must be complemented by boundary conditions, and we consider again the two cases
that correspond to those singled out above, see (2a) and (2b): the ‘periodic’ case with the
assignment,

z0(t) = zN(t), zN+1(t) = z1(t), (5a)

and the free ends case, entailing again the disappearance of the terms featuring z0 or zN+1,
which can be formally implemented via the assignment

ż0(t) = z0(t) = 0, żN+1(t) = zN+1(t) = 0. (5b)

These equations of motion, (4), reduce to (1) for ω = 0 (in which case τ = t, zn(t) = ζn(τ ):
see (3)), and this constant ω could be rescaled away when it does not vanish; but we prefer to
keep it in evidence, and we hereafter assume it to be positive, ω > 0, whenever we consider
these isochronous systems. This constant ω sets the timescale, and we associate with it the
basic period

T = 2π

ω
. (6)



On isochronous Bruschi–Ragnisco–Ruijsenaars–Toda lattices 315

As explained in detail elsewhere (see for instance [21, 22]) the motivation for introducing
and investigating, whenever possible, autonomous ‘ω-modified’ systems obtained via the trick
(3) is because clearly this transformation with λ real and rational (say, λ = r/s with r and s
coprime integers and s > 0) entails that, to every function ζn(τ ) that is free of branch points
in the circular disc D of radius 1/ω and centre i/ω in the complex τ -plane, there corresponds
a function zn(t) that is periodic in t with period (at most) sT . If the functions ζn(τ ) are the
solutions of an integrable system there is some justification to expect that all these functions
are indeed free of branch points, and therefore that all the solutions of the corresponding ‘ω-
modified’ model are completely periodic, entailing the isochronous character of this model.
Let us, however, emphasize that one cannot be certain that the ω-modified system obtained in
this manner from an integrable system is indeed isochronous, unless one is also able to show
that all the solutions of the integrable model do have the property to be free of branch points
in D (actually isochronicity also obtains if there is at most a finite number of branch points of
rational exponent in D).

The integrability indeed solvability [4, 5] of the BRRT model (1) with (2a) and (2b) entail,
via (3), that, if λ is a rational number (as we hereafter assume), the generic solution of the
corresponding isochronous model (4) with (5) is completely periodic (thereby justifying the
term isochronous attributed to this model: indeed perhaps a more appropriate terminology to
denote this many-body system is to state that it describes an assembly of nonlinear harmonic
oscillators [25]).

The main focus of this paper is to investigate the equilibrium configurations of this
isochronous model (4) (with λ �= 0: indeed in the special case with λ = 0, for both types of
boundary conditions, any configuration with initially vanishing velocities, żn(0), remains at
rest throughout the time evolution; we do not discuss this special case in this paper). In the
following section 2, we show that this system, (4), has one (or perhaps several, see below)
equilibrium configurations (which we find explicitly) iff λ = N in the free ends case, see
(5b), while it has no equilibrium configuration at all in the periodic case, see (5a). In the
subsequent section 3, we investigate the behaviour of this isochronous system in the free ends
case, (4) with (5b), in the vicinity of its equilibrium configuration: the isochronicity of this
system implies that the N periods of its small oscillations in that neighbourhood must all be
integer multiples of the basic period T, and this yields a diophantine finding and leads us
to proffer a diophantine conjecture. Finally in section 4, we extend these results to some
other analogous models, which are as well known to be integrable but whose solutions are
not explicitly known; and in this manner we are led to another diophantine conjecture, and
also to some insight on the solutions of these integrable models. In particular, we are led to
conjecture that the following system (clearly characterized by free ends boundary conditions)
is as well isochronous:

z̈1 + i(2N − 1)ωż1 − N(N − 1)ω2z1 = (ż1 − iλωz1)
2

z1 − z2
, (7a)

z̈n + i(2N − 1)ωżn − N(N − 1)ω2zn = (żn − iλωzn)
2

[
1

zn − zn−1
+

1

zn − zn+1

]
,

n = 2, . . . , N − 1, (7b)

z̈N + i(2N − 1)ωżN − N(N − 1)ω2zN = (żN − iλωzN)2

zN − zN−1
. (7c)

Note, the similarity yet difference of this model from (4) with (5b) and λ = −N .
Let us end this introductory section by mentioning that it is possible [26, 2, 5] to identify

the complex plane in which the coordinates ζn move, as well as their counterparts zn in
the isochronous cases, with the real horizontal plane, thereby attributing a more physical
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significance to the corresponding equations of motion, which can then be interpreted as the
real rotation-invariant equations of motions of Newtonian type describing N particles that
move in the horizontal plane under the influence of certain one-body and two-body velocity-
dependent forces. For instance the equations of motion (4) can be re-written as follows:

�̈rn = (2λ + 1)ωk̂ ∧ �̇rn + λ(λ + 1)ω2�rn − r−2
n,n−1[�vn(�vn−1 · �rn,n−1) + �vn−1(�vn · �rn,n−1)

− �rn,n−1(�vn · �vn−1)] − r−2
n,n+1[�vn(�vn+1 · �rn,n+1) + �vn+1(�vn · �rn,n+1)

− �rn,n+1(�vn · �vn+1)], (8a)

�vn ≡ �̇rn − iλωk̂ ∧ �rn. (8b)

Here the real vector �rn(t) ≡ ( Re[zn(t)], Im[zn(t)], 0) identifies the position of the nth
particle in the horizontal plane, k̂ = (0, 0, 1) is the unit vector orthogonal to the horizontal
plane, �rn,m ≡ �rn − �rm so that r2

n,m = r2
n + r2

m − 2�rn · �rm, and the rest of the notation is, we trust,
self-evident. Analogous considerations apply to all the models considered in this paper: we
leave to the interested reader the task to display (if need be, see chapter 4 of the book [2]) the
‘more physical’ real versions of the Newtonian equations of motion which are exhibited above
and below only in their complex avatars. This possibility provides an additional ‘physical’
motivation to investigate the many-body problems treated in this paper.

2. Equilibrium configurations

Let us characterize the equilibrium configuration of the system (4) as follows:

zn = un żn = 0, n = 1, . . . , N. (9)

We only consider genuine equilibrium configurations, characterized by values of N numbers
un that avoid any vanishing of the denominators on the right-hand side of the equations of
motion (4), hence satisfy (in the free ends case) the inequalities

u1 �= u2, (10a)

un �= un±1, n = 2, . . . , N − 1, (10b)

uN �= uN−1. (10c)

Moreover, we restrict hereafter consideration to nonvanishing values of the equilibrium
coordinates un,

un �= 0, n = 1, . . . , N, (11)

since it is clear from the equations of motion (4) that a particle sitting still at zn = 0 neither
feels nor contributes any force and is therefore altogether ignorable: actually the presence of
any such particle, say zν = 0, de-couples the problem into two separate ones: one involving
only the coordinates zn(t) with n > ν and the other involving only the coordinates zn(t) with
n < ν.

Then the equations of (no) motion (4) with (5b) yield the relations

−λ − 1 = λ
u2

u1 − u2
, (12a)

−λ − 1 = λ

(
un−1

un − un−1
+

un+1

un − un+1

)
, n = 2, . . . , N − 1, (12b)

−λ − 1 = λ
uN−1

uN − uN−1
. (12c)
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Let us now introduce the ratios

αn = un

un+1
, n = 1, . . . , N − 1, (13)

whereby the N-nonlinear algebraic equations (12) read (after a convenient rearrangement) as
follows:

1

1 − α1
= 1

λ
+ 1, (14a)

1

1 − αn

= 1

1 − αn−1
+

1

λ
, n = 2, . . . , N − 1, (14b)

αN−1 = 1 + λ. (14c)

The recursion (14b) with the initial condition (14a) is easily solved:

1

1 − αn

= n

λ
+ b, (15)

where b is an arbitrary constant. Then the first boundary condition (14a) entails b = 1,
yielding

αn = n

n + λ
, n = 1, . . . , N − 1. (16)

And the second condition (14c) then determines λ uniquely

λ = −N, (17)

entailing

αn = n

n − N
, n = 1, . . . , N − 1. (18)

From this last formula and (13) one also gets

un = (−)n−1 (N − 1)!

(n − 1)!(N − n)!
u = (−)n−1

(
N − 1
n − 1

)
u, (19)

where u = u1 is an arbitrary (nonvanishing) constant (whose presence reflects the scaling
invariant character of the equations that determine the numbers un, see above).

We conclude that the equilibrium configuration of the isochronous system (4) with (5b) is
uniquely determined by the first-particle position u1 = u, that can be assigned arbitrarily (up
to the condition (11)). Note that for even N the equilibrium positions un are all distinct, i.e.
un �= um if n �= m, while for odd N clearly un = uN−n+1 (for even N clearly un = −uN−n+1).
Actually the following results do not require the determination of the equilibrium coordinates
un: their ratios αn suffice (see (13) and (18)).

Of course all these findings are consistent with the known solution [3, 2] of this N-body
system, and indeed could have been retrieved from it.

The treatment in the case with ‘periodic’ boundary conditions, see (5a), is analogous. In
this case the equations of (no) motion yield the relations

−λ − 1 = λ

(
u2

u1 − u2
+

uN

u1 − uN

)
, (20a)

−λ − 1 = λ

(
un−1

un − un−1
+

un+1

un − un+1

)
, n = 2, . . . , N − 1, (20b)

−λ − 1 = λ

(
uN−1

uN − uN−1
+

u1

uN − u1

)
. (20c)
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Proceeding as above, see (13), we obtain again the recursion (14b) but now it is
supplemented by the requirement that definition (13) holds also for n = 0 and for n = N with
the assignments

α0 = αN = uN

u1
. (21)

The requirement that solution (15) of the recursion relation (14b) holds for n = 0 then
determines the constant b, and one obtains thereby the formula

αn = λα0 + n(1 − α0)

λ + n(1 − α0)
, n = 1, . . . , N. (22)

It is thereby immediately seen that condition (21) entails

α0 = 1, (23)

implying via (22)

αn = 1, n = 1, . . . , N.

This entails the unacceptable result that all the equilibrium positions coincide, un = u1.
We, therefore, conclude that in this case the N-body problem has no genuine equilibrium
configuration.

3. Behaviour near equilibrium and diophantine relations

Let us now consider the behaviour of our isochronous system (4) with (5b) in the neighbourhood
of its equilibrium configuration, as determined in the preceding section. To this end we set

zn(t) = un + εwn(t), (24)

and we then insert this assignment in the equations of motion (4) with (5b) treating ε as a
small parameter. We thus get the linearized equations of motion

ẅ1 − (2λ + 1) iωẇ1 − λ(λ + 1)ω2w1 = iλω

[
u2ẇ1 + u1ẇ2

u1 − u2

]
− λ2ω2

[
u2

2w1 − u2
1w2

(u1 − u2)2

]
,

(25a)

ẅn − (2λ + 1) iωẇn − λ(λ + 1)ω2wn = iλω

[
un−1ẇn + unẇn−1

un − un−1
+

un+1ẇn + unẇn+1

un − un+1

]

− λ2ω2

[
u2

n−1wn − u2
nwn−1

(un − un−1)2
+

u2
n+1wn − u2

nwn+1

(un − un+1)2

]
,

n = 2, . . . , N − 1, (25b)

ẅN − (2λ + 1) iωẇN − λ(λ + 1)ω2wN = iλω

[
uN−1ẇN + uNẇN−1

uN − uN−1

]

− λ2ω2

[
u2

N−1wN − u2
NwN−1

(uN − uN−1)2

]
, (25c)

namely,

ẅ + iωA ẇ − ω2B w = 0. (26)

Here and below, to underline the vector and matrix character of our formulae, N-vectors are
denoted by lower case underlined letters, hence w = w(t) denotes the N-vector of components



On isochronous Bruschi–Ragnisco–Ruijsenaars–Toda lattices 319

wn = wn(t), and likewise N ⊗ N matrices are denoted by upper case underlined letters. In
particular, the two (constant) matrices A and B are defined (componentwise) as follows (as
implied by (25) with (13) and (18)):

An,n = N, An,n−1 = N + 1 − n, An,n+1 = n, (27a)

Bn,n = −2n2 + (N + 1)(2n − 1) ≡ 1
2 [N2 − 1 − n2 − (N + 1 − n)2], (27b)

Bn,n−1 = (N + 1 − n)2, Bn,n+1 = n2. (27c)

Note the simple symmetry properties of these formulae under the transformation
n �→ N + 1 − n.

The general solution of the system of linear ODEs (26) is provided by formula

w(t) =
2N∑
k=1

ak exp( ipkωt)v(k), (28)

where the 2N constants ak are arbitrary (to be determined, in the context of the initial-value
problem, from the 2N initial data wn(0) and ẇn(0)), while the numbers pk , respectively, the
corresponding N vectors v(k), are the 2N eigenvalues, respectively the 2N eigenvectors, of the
following (generalized) N-vector eigenvalue equation:

p2
kv

(k) + pkA v(k) + B v(k) = 0, k = 1, . . . , 2N. (29)

Hence the numbers pk are the 2N roots of the following equation (polynomial of degree 2N )
in p:

det[p21 + pA + B] = 0. (30)

Here and throughout 1 denotes of course the N ⊗ N unit matrix, (1)nm = δnm.
But we already know, from our previous treatment, that the solutions of the isochronous

model (4) are completely periodic with period T, see (6). The same periodicity property
must, therefore, characterize the behaviour of solution (28) describing the behaviour of the
system in the neighbourhood of its equilibrium configuration. We thus arrive at the following
diophantine finding: the 2N roots pk of the polynomial equation (30) with (27) are all integers.

In fact, motivated by this finding and by some numerical checks, we make the following
diophantine

Conjecture 3.1. Let the two N ⊗ N tridiagonal matrices A and B be defined by (27), then

det[p21 + pA + B] = p(p + N)

N−1∏
k=1

(p + k)2. (31)

Examples of the (true) diophantine relations entailed, for increasing values of N, by this
formula follow:∣∣∣∣∣p

2 + 2p + 1 = (p + 1)2 p + 1

p + 1 p2 + 2p + 1 = (p + 1)2

∣∣∣∣∣ = p(p + 1)2(p + 2), (32a)

∣∣∣∣∣∣∣
p2 + 3p + 2 = (p + 1)(p + 2) p + 1 0

2p + 4 p2 + 3p + 4 2p + 4

0 p + 1 p2 + 3p + 2 = (p + 1)(p + 2)

∣∣∣∣∣∣∣
= p(p + 1)2(p + 2)2(p + 3), (32b)
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∣∣∣∣∣∣∣∣∣∣

p2 + 4p + 3 = (p + 1)(p + 3) p + 1 0 0

3p + 9 p2 + 4p + 7 2p + 4 0

0 2p + 4 p2 + 4p + 7 3p + 9

0 0 p + 1 p2 + 4p + 3 = (p + 1)(p + 3)

∣∣∣∣∣∣∣∣∣∣
= p(p + 1)2(p + 2)2(p + 3)2(p + 4). (32c)

While we have no doubts about the validity of this conjecture, because of the way it was
arrived at and the numerical checks we made, to actually prove it for all values of N one should
solve the eigenvalue problem (29) with (27): this task is probably possible, but it does not
appear to be quite trivial.

4. Extensions to two other analogous models

In this section we indicate to what extent the findings reported above can be extended to two
other analogous models, and we thereby arrive at some other diophantine relations as well as
to some interesting insights about the solutions of the second of these integrable models.

The first model we consider is characterized by the equations of motion

z̈1 − iωż1 − λω2z1 = ż2
1

z1
− (ż1 − iλωz1)(ż2 − iλωz2)z1

(z1 − z2)z2
, (33a)

z̈n − iωżn − λω2zn = ż2
n

zn

− (żn − iλωzn) ·
[
żn−1 − iλωzn−1

zn − zn−1
+

(żn+1 − iλωzn+1)zn

(zn − zn+1)zn+1

]
,

n = 2, . . . , N − 1, (33b)

z̈N − iωżN − λω2zN = ż2
N

zN

− (żN − iλωzN)

[
żN−1 − iλωzN−1

zN − zN−1

]
, (33c)

that are obtained via the usual trick, see (3) (with an obvious change of notation), from the
equations of motion (23) of section 2.1.13 of [2] (note that these equations of motion are, up
to the change of variables un(t) = c−2n[2aqn(t)], just those of the Ruijsenaars–Toda system,
see equation (19) ibidem, for the free ends type of boundary conditions (2b)). Because of the
way this model has been obtained it is presumably isochronous.

A treatment completely analogous to that performed above for the model (4) yields for
the equilibrium positions un (see (9)) the relations

1 = −λ
u1

u1 − u2
, (34a)

1 = −λ

[
un−1

un − un−1
+

un

un − un+1

]
, n = 2, . . . , N − 1, (34b)

1 = −λ
uN−1

uN − uN−1
, (34c)

that we conveniently rewrite in terms of the ratios αn (see (13)) as follows:

1

1 − α1
= 1 +

1

λ
, (35a)
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αn

1 − αn

− αn−1

1 − αn−1
= 1

λ
, n = 2, . . . , N − 1, (35b)

αN−1 = 1

1 − λ
. (35c)

The recursion (35b) with (35a) is easily solved

αn = n

n + λ
, n = 1, . . . , N − 1, (36)

and the insertion of this expression of αn with n = N − 1 in (35c) entails

λ = 0, (37)

hence the unacceptable result

αn = 1. (38)

We conclude that this N-body problem has no genuine equilibrium configuration.
An analogous treatment of the variant of this model (33b) with periodic, rather than free

ends, boundary conditions (namely, the model with the equations of motion (33b) assumed
valid for all values of n including n = 1 and n = N and with (5a)) yields the same conclusion
(the detailed derivation is left as an exercise for the diligent reader).

An analogous treatment is as well applicable to the ‘ω-modified’ systems, see below, that
we obtain via the usual trick, see (3), from equation (2) of section 4.4.7 of [2] (see p 486
of this book; the following assignments and notational changes should be performed before
applying the trick (3): a = 0, b = 0, zn(t) �→ ζn(τ ); the explicit version of these equations
correspond of course to the ω = 0 case of the equations written below, (39)). As indicated
above (see section 1), since the original system is known [30, 31] to be integrable (at least
for some appropriate boundary conditions [27, 28]), one might expect (but cannot be certain,
since the solutions of these systems are not known) that the ‘ω-modified’ systems obtained in
this manner are isochronous. We shall see below that our treatment provides some insights in
this respect.

When the system identified above is complemented with free ends boundary conditions
the equations of motion of its ‘ω-modified’ version read as follows:

z̈1 + i(2λc − 1)ωż1 + λ(λc − 1)ω2z1 = (1 + c)
ż2

1

z1
− c(ż1 − iλωz1)

2

z1 − z2
, (39a)

z̈n + i(2λc − 1)ωżn + λ(λc − 1)ω2zn = (1 + c)
ż2
n

zn

− c(żn − iλωzn)
2

[
1

zn − zn−1
+

1

zn − zn+1

]
, n = 2, . . . , N − 1, (39b)

z̈N + i(2λc − 1)ωżN + λ(λc − 1)ω2zN = (1 + c)
ż2
N

zN

− c(żN − iλωzN)2

zN − zN−1
. (39c)

An analogous model, associated with periodic boundary conditions, is characterized
instead by the validity of the ODEs (39b) for all values of n (including n = 0 and n = N ),
with the additional prescription (5a) to make sense of these ODEs also when n = 0 or n = N .
In this second case, a treatment completely analogous to that performed above leads again to
the conclusion that there is no genuine equilibrium configuration.

In the case characterized by the system of ODEs (39) as written above (corresponding
therefore to free ends boundary conditions) a treatment completely analogous to that performed
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above allows instead, as in the case treated in section 2, to identify an equilibrium configuration
(again unique up to rescaling), with the quantities αn (see (13)) defined now as follows:

αn = n − N

n
, (40)

and correspondingly with the two parameters λ and c related by the formula:

λc = N. (41)

Let us then proceed and analyse, following again the previous treatment (see section 3),
the behaviour of this model, (39), in the neighbourhood of its equilibrium configuration. We
thereby get the following linearized equations of motion (in the notation of section 3):

ẅ + iωÃ ẇ − c−1ω2B̃ w = 0, (42)

with the two (constant) N ⊗ N matrices Ã and B̃ defined now (componentwise) as follows:

Ãnm = δnm, Ã = 1, (43)

B̃n,n = N(N − 1) − (n − 1)2 − (N − n)2, (44a)

B̃n,n−1 = (n − 1)2, B̃n,n+1 = (N − n)2. (44b)

Note that the matrix Ã is now diagonal (in fact it coincides with the unit matrix), while the
matrix B̃ is tridiagonal; and note the symmetrical character of this second matrix under the
exchange n − 1 �→ N − n.

The solution of (42) reads (in the notation of section 3; the second version of this formula
obtains via (41))

w(t) =
2N∑
k=1

ak exp

(
ipkλωt

N

)
v(k) =

2N∑
k=1

ak exp

(
ipkωt

c

)
v(k), (45)

where the 2N numbers pk are the 2N eigenvalues of the generalized eigenvalue equation[(
p2

k + cpk

)
1 + cB̃

]
v(k) = 0, (46)

hence they are the 2N roots of the following polynomial equation (of degree 2N in p):

det[(p2 + cp)1 + cB̃] = 0. (47)

By setting p2 + cp = q, one clearly sees that these 2N numbers pk are given by the formula

pm = 1
2 [−c + (c2 − 4cqm)1/2], pN+m = 1

2 [−c − (c2 − 4cqm)1/2],
(48)

m = 1, . . . , N,

where the N numbers qm are now the N roots of the polynomial equation (of degree N in q)

det[q1 − B̃] = 0. (49)

Note that the parameter c has now dropped out from this formula (see (44)).
If we knew for sure that the system (39) were isochronous, we could assert that the

numbers pk must all be rational whenever λ, hence as well c (see (41)), are rational. But
clearly this cannot be the case for an arbitrary rational value of the parameter c (see (48)
and (49)). This demonstrates that the original system, of which the system (39) is the ‘ω-
modified’ variant, in spite of its property to be integrable, does not feature only solutions
whose analytic structure as functions of the independent variable is sufficiently simple to
guarantee the isochronicity of (39). Numerical checks for small values of N (see below) do
however indicate that the numbers pk are indeed rational (in fact they are all integers: this



On isochronous Bruschi–Ragnisco–Ruijsenaars–Toda lattices 323

motivates a posteriori the form of our ansatz (45)) for the special value c = −1 (entailing
λ = −N , see (41) as well as some marginal simplification of the system (39); see (7)). We
are therefore led to conjecture that, in this special case, the model (7) is indeed isochronous,
and to proffer the following diophantine

Conjecture 4.1. the tridiagonal N ⊗ N matrix M = 4B̃,

Mn,n = 4[N(N − 1) − (n − 1)2 − (N − n)2], (50a)

Mn,n−1 = 4(n − 1)2, Mn,n+1 = 4(N − n)2, (50b)

has the N eigenvalues m2 − 1,m = 1, . . . , N , i.e.

det[µ − M] =
N∏

m=1

[µ + 4m(1 − m)] (51)

Examples:∣∣∣∣µ − 4 −4
−4 µ − 4

∣∣∣∣ = µ(µ − 8), (52a)

∣∣∣∣∣∣
µ − 8 −16 0
−4 µ − 16 −4
0 −16 µ − 8

∣∣∣∣∣∣ = µ(µ − 8)(µ − 24), (52b)

∣∣∣∣∣∣∣∣
µ − 12 −36 0 0

−4 µ − 28 −16 0
0 −16 µ − 28 −4
0 0 −36 µ − 12

∣∣∣∣∣∣∣∣
= µ(µ − 8)(µ − 24)(µ − 48), (52c)

∣∣∣∣∣∣∣∣∣∣

µ − 16 −64 0 0 0
−4 µ − 40 −36 0 0
0 −16 µ − 48 −16 0
0 0 −36 µ − 40 −4
0 0 0 −64 µ − 16

∣∣∣∣∣∣∣∣∣∣
= µ(µ − 8)(µ − 24)(µ − 48)(µ − 80).

(52d)

Note that completely analogous considerations to those proffered at the end of the preceding
section are as well applicable here.

5. Outlook

The conjecture entailed by our treatment that the model (39) with ω = 0, while integrable
[27, 28, 30, 31] , possesses solutions all of which are meromorphic functions of the independent
variable (considered as a complex variable) if c = −1 is consistent with the exact solution of
this model for N = 2, which can be easily obtained. Unfortunately, even for N = 2, we have
not been able so far to obtain the exact solution of this model with c �= −1, although it can be
shown by perturbation techniques that the solution of the N = 2 model with c = −1 + ε and
ε a small parameter is indeed not meromorphic, consistently with our conjecture. The final
settling of this issue remains as an open problem.
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Another model (or rather a class of models) to which this approach is applicable is
characterized by the equations of motion

ζ ′′
n = (

ζ ′2
n + cζ k

) (
1

ζn − ζn+1
+

1

ζn − ζn−1

)
− kc

2
ζ k−1
n , (53)

with k = 0, 1, 2, 3 or 4. These models are presumably integrable [29–31], provided they
are complemented by appropriate boundary conditions, such as (2a) and (2b), specifying the
assignments of ζ0 and ζN+1 [27, 28] . One easily sees that via the change of dependent variables
ζn �−→ 1/ζn this model (53) goes into a completely analogous one up to the corresponding
change k �−→ 4 − k (we are indebted to Ravil Yamilov for this observation). Hence it is
sufficient to restrict attention to the three models with k = 0, 1, 2. A rather natural research
plan is to introduce via the trick (3) autonomous variants of these integrable models; it is easily
seen that this can be done (with an appropriate assignment of λ) for k = 0 and k = 1. As
explained above, one expects then that the two ‘ω-modified’ models obtained in this manner
be isochronous. One can then determine the equilibrium configurations of these two models:
again, they exist, and are easily found, only for the free ends type of boundary conditions.
One can finally investigate the behaviour of these isochronous systems in the vicinity of their
equilibrium configurations and thereby obtain some diophantine results. These findings will
be reported in a separate paper [32].
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